{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Plane Gliding Example\n", "\n", "This example demonstrates how to use flight-mech to compute quantities for a gliding plane." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Imports" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "# Python imports\n", "import os\n", "import sys\n", "sys.path.append(\"..\")\n", "\n", "# Additional imports\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "# Flight-Mech imports\n", "from flight_mech.plane import Plane" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Plane definition\n", "\n", "Let us use in this case the Cessna Citation III defined in the database." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Load the plane\n", "plane = Plane(\"cessna_citation_III\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Gliding quantities\n", "\n", "We can now define an altitude and compute the range and the slope of the plane gliding at its maximum glide ratio." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Range max [m] 4984.282870844184\n", "gamma min [°] -3.4485871487092092\n" ] } ], "source": [ "# Define the altitude\n", "z = 300\n", "\n", "# Print the results\n", "print(\"Range max [m]\", plane.compute_max_gliding_range(z))\n", "print(\"gamma min [°]\", plane.compute_min_descent_gliding_slope() * 180 / np.pi)" ] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.4" } }, "nbformat": 4, "nbformat_minor": 2 }